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NEGATION AS A MODAL OPERATOR *

Abstract. Kripke-style models which besides the intuitionistic accessibility relation have a modal
accessibility relation, and in which negation is treated as a modal impossibility operator, are given for pro-
positional logics with negation weaker than Johansson's negation, as well as for Johansson's and Heyting's
propositional logics and their extensions. The weakest logic captured by these models -— that one in which
the modal relation is as general as possible -— is properly contained in Johansson’s logic. Models of this
wype adequate tor the Johansson propositional calculus are shown intertranslatable with the standard
Kripke modeis for this calculus. Conditions which must be met by models of this type (o capture various
negation axioms, and some known extensions of the Johansson propositional calculus with these axioms,
are also considered. Tt is shown how in models adequate for the Heyting propositional calculus the modal
relation becomes definable in a certain sense in terms of the intuitionistic relation. Finally, some comments
are made on models of this type for propositional calculi based on classical or intermediate negationless
logics. AMS Subject Classification (1980): 03B20 Fragments of classical logic, 03B35 Intermediate logics,
03B45 Modal logic. °

§ 0. Introduction

The Johansson propositional calculus, which is obtained by weakening negation in the
Heyting propositional calculus, is sound and complete with respect to Kripke models
with a hereditary set of “queer” worlds Q in which the absurd holds (cf. § 5). This is the
weakest logic we can capture with Kripke models with @, and these models become inap-
plicable in the study of systems obtained by weakening negation still further. In this paper
we shall investigate Kripke-style models which can be used not only for Johansson's and
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Heyting’s propositional logics and their extensions, but also for these weak negation sy-
stems,

These models will be Kripke models with an extra Ry relation, besides the intuitionistic
reflexive and transitive relation R;. and we shall have

YEA—-B < Vy(xRy=(yF A=)k B))
XE A <« Vr(xRyy=1k A).

This amounts to treating negation as a modal impossibility operator added to negationless
logic, which is in this case the negationless fragment of the Heyting propositional calculus.
By making R, an equivalence, or an identity relation, we easily pass from these models
to models for extensions of the negationless fragment of the classical propositional calculus
with various negation axioms. We can also put on R, weaker conditions than that in order
to obtain intermediate logics.

We shall first consider the weakest propositional logic captured by these models,
i.e., the logic obtained when the Ry relation is as general as possible. This logic, which is
praperly included in Johansson’s, will be called N. Next we shall consider models with Ry
adequate for the Johansson propositional calculus. These last models will be shown inter-
translatable with models which have Q. Finally. we shall consider conditions which must
be put on the Ry relation to capture various negation axioms. We shall consider some
known extensions of the Johansson propositional calculus with these axioms, and models
with Ry adequate for these extensions. We shall also show how when we reach the Heyting
propositional calculus, Ry becomes definable in a certain sense in terms of R;. At the
very end we shall briefly consider models with Ry where the R, relation is strengthened
in the sense indicated above.

To obtain models for systems with negation still weaker than negation in N one could
try to adapt the neighbourhood semantics for modal logic (see [4]. Chapter 7). However,
we shall not try to do that here. Models treated in this paper correspond to the semantics
for normal modal logics.

This paper applies to intuitionistic and stronger logics a technique for treating negation
which was explored with relevant logics in [1]. It is also connected with [3], [6]. [7], [8]
and [2]. where models for intuitionistic modal logics — quite similar to the models treated
herec — were explored in some detail. The general background of this paper is provided
by [11].

§ 1. The syntax of N

The systems we shall consider will be formulated in a standard propositional language
which we shall call L. In L we have denumerably many propositional variables, for which
we use the schemata p, ¢, r, p,. ...; the connectives of L are —, A, v and 7. We use
A,B,C, ..., A, .. as schemata for formulae of L. Capital Greek letters will be used for
sets of formulae. As usual, 4 < B is defined by (4 — B) A (B— A4). We shall omit parentheses
following usual conventions: in particular we assume that A and v bind more strongly
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than — and <. The symbols V, 3, =, <, and, or, iff, not, and various set-theoretical
symbols will be used in the metalanguage with the usual meaning they have in classical
logic. We shall disregard quotation marks in the metalanguage.

Now we introducc the propositional calculus N (“N* stands for “negation”) with the
following rules and axiom schemata:

A A—B _ A—B
MP. = = NR, ———— |
B B—"14

l. A4—(B—4), 2. (A—(B—C))—((4—B)—(4—C)),

3. (C»A)—((C—B)—(C—AAB), 4 ArB—A, 5 AArB—B,

6. A>AvB, T1.B—>AvB, 8 (4-C)—((B—~C)—(AvB—C)),

NI. 14 A 1B—"1(4 v B).
If we omit NR and NI we obtain an axiomatization of the negationless fragment of the
Heyting propositional calculus H (for an axiomatization of H see ° 7). It is clear that N,
as well as all subsystems of H we shall consider, is a conservative extension of this fragment.
By an extension of a system S we understand any system in which all the theorems of S
are provable and which is closed under the primitive rules of S. We assume throughout
this paper that extensions of N are in L. It is easy to show that any extension of N is closed
under the Rule of Replacement '

A<B

CoC’
where C’ is obtained from C by replacing zero or more occurrences of A in C by B. Next
we give the following definition.

Definition 1. If S is an extension of N, & kg A iff there is a sequence of formulae
By, ..., B,, n >0, such that every formula in the sequence B, . ..., B,, 4 is either a theorem
of S, or belongs to @, or is obtained by MP from formulae preceding it in the sequence.

We shall write @ <4 A instead of not @ g A4, and kg A4, instead of & Fg 4. We omit
S from kg in contexts where it is clear what system S we have in mind. It is easy to prove
that the Deduction Theorem holds with respect to g, where S is any extension of N, i.e.
we have

PU{A}tsB=>Dtg A—B.

(It is essential for this Deduction Theorem that MP is the only rule mentioned in De-
finition 1.)

A set of formulae @ is consisternt (relative to S) iff not VA P rgA. Let
Cl(®) =4 {A| @ g A}. It foilows immediately that for every &, ® < Cl(P) and
CI(Cl(®)) = CI(®). A set of formulae ® is deductively closed (relative to S) iff CI(®) = &.
A set of formulae @ has the disjunction property iff YA, B(Av Be d=>Ac ® or Be ®).
A system has this property iff the set of its theorems has this property. Using a device
like Kleene's slash (cf. [9], pp. 30ft) it is easy to show for N and all the subsystems of H
we shall consider that they have the disjunction property.
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§ 2. N models

Models with respect to which we shall show that N is sound and complete are defined
as follows.

Definition 2. Fr = (X, R,. Ry) is a N frame iff (i) X is a nonempty set, (ii) R, € X2
and R, is reflexive and transitive, (iii) Ry< X?, and (iv) R;RyS RyR;' (we use
x,y,z,t,u,r,X,,.. as variables ranging over X; expressions of the form R, R,, which
abbreviates R, o R,, stand for {{x, y>| Az(vR,z and zR,y)}, and those of the form R~}
stand for the inverse relation of R).

Definition 3. M = (X, R,, Ry, V) is a N model ift (i) (X, R;, Ry) is a N frame. and
(i) V. called a valuation, is a mapping from the set of propositional variables of L to the
power set of X such that for every p, Vx, y(xR;y=(x e V(p)=y € V(p))). Note that Ry
in Fr and M can also be empty.

Definition 4. The relation {M,x»EAC(.e., Aholds in x in M), which is usually abbre-
viated by v F 4 where there can be no confusion, is defined by
(i) xEp<exeV(p)
(ii) xEBAC<XxEBand xEC
(iii) xEBvC<sxEBor xEC
(iv) xE B> C< Vy(xR;y=(EB=yk())
(V) xE 1B < Vy(xRyy =) = B).
We write x # A instead of not x F A.

Definition 5. (i) M F A (i.e., A holds in M) iff Vx{M,x) k A. (ii) FrF A (i.e., A holds
in Fr) iff VM (the frame of M is Fr= M k A). (iii) 4 is S valid iff for every S frame Fr,
FrE A

Next it is possible to prove the following lemma by induction on the complexity of A4.

Lemma 1 (Intuiticnistic Heredity). In every N model, for every x and y, and for every A
of L, xRjy=(xF A=y F A).

This lemma shows that every N model is a model for the negationless fragment of H.
This means that the condition R;Ry < RyR;! is sufficient for that to be the case. But
this condition is also necessary. Before showing that, we state the following lemma, which
we shall have occasions to use also later.

Lemma 2. Let Q be R, R, ... R,, n >0, where R;, 1 > i>n, is either Ry, or Ry, or R{?,
or Ry'; and Iqt yeX, where (X, R;, Ry> is a N frame. Then
() Vx(xFp<>yQOR,x) or
(ii) Vx(x F p <> not xR;Qy) or
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(iii) Vx(x k p < not yQR;"x) or
(iv) YVx(x Ep< xR ' Qy)
implies that ¥x,, X,(x, Ryx,=>(x; F p=>x, F p)).

Now we can show the necessity of the condition R; Ry < Ry Ry ' for Intuitionistic Heredity.

Lemma 3. Let { X. R,. Ry satisfy conditions (1))—(iii) of Definition 2 and let condition (iv),
i.e., Ry Ry S Ry Ry, be unsatisfied. Then there is « formula A of L and a valuation V such
that in {X, R,, Ry, V) for some x and y, xR,y and xF A and y & A.

Proof. Since not R;Ry < RyRy*, there are some x, y and z such that
) XR;y and yRyz and Vi(xRyt=>not zR;t).

Let Yu(u F p < zR,u). By Lemma 2(i) there is a valuation such that this is satisfied From
the last conjunct of (1) it follows that with this valuation x £ 71 p. On the other hand, since
zR,z, we have vy T1p. q.e.d.

In a certain sense we have shown that models with the condition R;Ry < RyR;!
form the largest class of models with respect to which we can expect to show that N is
sound and complete. But we also have the following lemmata which indicate that a proper
subclass of N models might be used as well.

Lemma 4. In N models, x F 1A < Vy(xRyR; 'y =1 = A).

This lemma is easily proved using Intuitionistic Heredity and the reflexivity of R;.
Using the reflexivity and transitivity of R, we can show the following lemma.

Lemma 5. In the definition of N frames we can replace the clause RyRy < RyR; ! by~
RyRyR;' S RyR; ! yielding the same class of frames.

So, roughly speaking, out of N models we can make new models by replacing the Ry Ry *
relation by a new relation R‘l such that in these new models R IR‘IER”P and R-] is
the R, relation of the new models, which validate exactly the same formulae as the old ones.
Since RyR;'R;'< RyR;!, we can further “condense” these models by making
R-R; ' = R+. So, we introduce the following definition. -

. Definition 6. A N frame (model) is condensed iff R;Ry < Ry, and it is strictly condensed
iff RyR;'<Ry.

It is easy to show that strictly condensed N frames form a proper subclass of condens-
ed N frames, which form a proper subclass of the class of all N frames. It is also easy to
show that in condensed N frames R;Ry = Ry, whereas in strictly condensed N frames
R,Ry = RyR;' = Ry. (All the connections between R, and Ry in strictly condensed N
frames follow from R;RyR;' S Ry.)

Another “condensation™ of our models would be made by requiring that R is not only
reflexive and transitive, but a partlal ordering. The soundness and completeness results
which follow would also hold with such an R,.

2
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§ 3. Soundness and completeness of N

In this section we shall show that N is sound and complete with respect to N models,
and also with respect to condensed and strictly condensed N models. First we introduce
the following definition.

Definition 7. A set of formulae I" is a theory iff I' is deductively closed and has the
disjunction property.

In the following lemma (whose analogues are fairly well known; cf. [11], Lemma 2.2)
F stands for kg, where S is any extension of N, and “theory” means “theory with respect
to S”.

Lemma 6. Let @ j< A. Then there is o theory I' such that @ < T and I'y< A (i.e.,
A¢ ).

Proof, Let Z = {y|®@ = and A ¢y and CI(Y) € y}. Since C/(P) e Z, Z is nonempty,
and it is easy to show that it is closed under unions of nonempty chains. Hence, by Zorn's
Lemma Z has a maximal element /" It is easy to check that /' is a theory. q.c.d.

On the set of theories we build a canonical model defined as follows.

Definition 8. Let S be any extension of N, and let

X =4{l|Tis a theory with respect to S}

I'RiA =4 s, where I',de X°

IRyA =4 'qn 1 = @, where I' =4 {4| V4 e} and T, de X"

Then (X, R}, Ry is the canonical S frame. Let V° be a mapping from the set of propo-
sitional variables of L to the power set of X such that V(p) =4 {I'|pe I'}. Then
{X*, R{, Ry, V® is the canonical S model.

This definition of canonical models differs from the usual one in not requiring the con-
sistency of theories which make the model. So the set of all formulae, which is a theory,
though inconsistent is in the canonical model. In general it will be clear from the context
when capital Greek letters range over members of X, and we shall not always note specially
that the sets in question are theories.

In the following two lemmata S stands for any extension of N.

Lemma 7. The canonical S frame (model) is a strictly condensed N frame (model).

Proof. We have that X° # @ since the set of all formulae is a theory. It is trivial to check
clauses (i) and (iii) of Definition 2, and to show that V¢ is a valuation. It remains only to
check that 30 ('€ @ and @4 = @)=>T- nd = @, and that 30(I'1n 6@ = G and
A;@):I’—Imd=®. q.e.d. o
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Lemma 8. In the canonical S model, for every I'e X and for cvery 4 I'k A<« AeT.

Proof. By induction on the complexity of 4. We shall consider only the case with 7 of
the induction step (the rest is well known; cf. [11], Lemma 2.3). Using the induction
hypothesis we have that I'F 1B« VA(I'nd = @=B¢.1). We shall show that
Bel < VA (F-ﬂln/.i = @=B¢A). From left to right this is cbvious. For the other
direction suppose T1B¢ I'. Then we show that there is a theory A such that I'-ynd = O
and BeA. .

Let Z = {®|I'-n® = @ and Be & and CI(®) € ®}. First we show that C/({B}) € Z.
The only difficult part of this is to show that I'4n CI({B}) = @. Suppose Ce I'q and
Ce CI({B}). Then 1Ce I and {B}F C, from which we obtain F1C-~71B using the
Deduction Theorem and NR. But then since 7" is a theory, 71B € I', and this is a contra-
diction. Hence, Z is nonempty, and it is easy to show that it is closed under unions of non-
empty chains. So, by Zorn’s Lemma, Z has a maximal element /1. We shall show that
A4 is a theory.

We infer immediately from A € Z that .1 is deductively closed. To show that it has the
disjunction property suppose that for some C and D, Cv De 1 and C¢ .1 and D ¢ .
Since AU {C} and 1uU{D} are proper supersets of .1, they cannot be in Z. A fortiori,
ClI(Au{C}) and CI(:1u{D}) are not in Z. This is possible only if for some @, from the
first and some D, from the second of these last two sets, 1C; € I'and 71D, € I'. Since I'is
a theory. using N1 we obtain 71(C, v D,) e I". On the other hand, it is easy to check that
C, v D, e.1, which contradicts I'mn4 = @. So, -1 has the disjunction property. q.e.d.

Now we can prove the soundness and completeness of N.

Theorem 1. FyA < for every N frame Fr, Fr & A
<> for every condensed N frame Fr, Frk A

<> for every strictly condensed W frame Fr, FrE A.

Proof. The soundness part (=) is proved by a straightforward induction on the length
of proof of A4 in N. For the completeness part (<=) supposc b<yA. Then by Lemma 6 it
follows that the set of theorems of N can be extended to a theory I' such that 4 ¢ I' (in
fact, it is already a theory). Using Lemma 8 we obtain that 4 does not hold in the cano-
nical N model, which according to Lemma 7 means that it doesn’t hold in a N frame
(condensed N frame, strictly condensed N frame). q.e.d.

§ 4. Soundness and completeness of J

Johansson’s, “minimal”, propositional calculus J will be obtained by extending N with
the following two schemata

A—"1714
(A—B)—~>(T1B—"1A4).
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It is easy to check that alternatively we could obtain J by extending N with the following
single schema

N4 (4—"1(B—B))
or the following single schema
(A—"1B)—(B—"14) .

Note also that NR and N1 are redundant in the axiomatization of J.

In the sequel we shall use R as an abbreviation for RyR;!. This will enable us to
translate easily results obtained for N models in general into results about strictly condens-
ed N models.

Then we show the following lemma.

Lemma 9. Fr F A—>71714 < R+ is symmetric.

Proof. (=) Suppose R+ is not symmetric. It follows that for some x, y and z, xRyz
and yR;z and Y1(yRyt=>not xR;1). Let Vu(u F p <> xR,u). By Lemma 2(i) there is a va-
luation such that this is satisfied. With this valuation it follows from xR,x that x F p.
On the other hand, we obtain Vi(yRyt=>tkp), and hence y F 71 p. Using Intuitionistic
Heredity, it follows that z F —1p, and since xRyz, we have xk 71 1p. So, xp—"1"1p.

(<) Suppose v F A—"1714. It follows that there is an x such that vR;x and xF A
and x"171A4. From the last conjunct we obtain that there is a y such that xRyy and
¥ E 714. From xRy ) and the reflexivity of R, we obtain xR—), and then using the symmetry
of R— we obtain YR-x, i.e., there is a = such that yRyz and xR, z. From yRyz and y F 714
it follows that zg«4. But then xR,z and xE A and zwA contradicts Intuitionistic
Heredity. q.e.d.

We have proved Lemma 9 in some detail to illustrate the method which can be used to
prove a number of similar lemmata about the equivalence of a schema with a condition
on N frames. We shall state such lemmata in the sequel without proof. For the (=) parts
we shall need in general Lemma 2 to construct a valuation falsifying the schema in question
if the relevant condition doesn’t hold. Next we state two such lemmata.

Lemma 10. Fr k (4— B)—(T1B—714) <> Vx, y(xRyy=3z(xR;z and yR;z and xRy 2)).
Lemma 11. (i) Fr F 1A—(4—1(B—B)) <> Vx, y(3z, t(xR;z and yR;:z and zR\t)=

=xR—y).
(i) Frk(4—1(B—B))—14 < Vx, y(xR-y=3z,t(xR;z and yR;z and zRy1)).

In accordance with Lemmata 9, 10 and 11, and with what we have stated about the axio-
matization of J, it is of course possible to show that (R'l is symmetric and Vx, y(xRN_v=>
=3z(xR;z and yRz and xRyz))) iff Vx,y(xRqy <3z, t(xR;z and yR;z and zRyt)).

Next we introduce the following definition,
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Definition 9. A N frame (model) is a J frame (model) iff R is symmetric and
Vx, v(xRyy=>3:z(xR;z and yR;z and xRyz)).

We proceed to show that J is sound and complete with respect to J models. First we
prove the following.

Lemma 12. The canonical J frame (model) is a J frame (model).

Proof. According to Lemma 7, the canonical J frame is a strictly condensed N frame.

Next we show that in this frame Ry, and hence also R-. is symmetric. Suppose
r-\md = . It follows that ;1—@ I' = @, since otherwise for some A, TAe A and Ae T,
using A—71714 we obtain 114 el and 1A e, which contradicts I'qnd = @

We can also show that r—n 1=0=30(cO@andd < @ and I'<n O = J). Suppose
I'ynd =@ and let Z = {¢| v =@ and I'n® = & and CI(®) € §}. We can show
that C/(I'u 1) e Z. The only difficult part of this is to show that r{ncCl(rvi) = g.
Suppose this is not the case: then for some A4, 714 € I'and I"'u 4 F 4. Using the deductive
closure of 4 (which also implies the nonemptiness of A) and the Deduction Theorem,
it follows that for some De:d, 't D—A. Using (D—A)—(14—"1D), we obtain
'k 7A—"D, which with 74 e I' and the deductive closure of I' implies T1De I
But this with D e 1 contradicts I'-yn1 = @. Hence, Z is nonempty, and it is easy to show
that it is closed under unions of nonempty chains. Hence, by Zorn’s Lemma, Z has a maxi-
mal element @. 1t is easy to check that @ is a theory (cf. proof of Lemma 8).

Since. as before, V° is a valuation, this proves the Lemma. q.e.d.

Now, using Lemma 12, and proceeding as for Theorem 1, we obtain the following
soundness and completeness theorem.

Theorem 2. F;A4 <> for every (condensed, strictly condenscd) J frame Fr, Frk A.

§ 5. J models and Q models

Consider the following definition.

Definition 10. <X, R,, Q> is a Q frame iff (i) and (ii) are as in Definition 2 and (iii)
Q =X and Q is hereditary, which means Vx, v(xR;y=(xe Q=€ Q)); (<X, R;, 0, V>
is a Q model iff (X.R;, Q) isa Q frame and V is a valuation as in Definition 3.

It is well known that with definitions analogous to Definitions 4 and 5, save that we
have

xE 1B« Vy(xR;y=(y F B=>1e Q)

we can show that J is sound and complete with respect to Q models (see [11]).
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Using Intuitionistic Heredity in Q models and the reflexivity of Ry, it is easy to show
the following lemma, which we shall need in the sequel.

Lemma 13. In Q models

xE A<« Vy(3z(xR;z and yR;z and z ¢ Q)=>yA).

Cur purpose now is to show how Q models can be “translated” into strictly con-
densed J models and vice versa. These “translations” are exhibited in the following theorems.

Theorem 3.1. Let My = (X, Ry, Q, V) be a Q model, and let Ry be defined over X by
(1) xRyy <> 3z(xR;z and yR;z and z ¢ Q).
Then My = {X, Ry, Ry, V> is a strictly condensed J model such that
(2) ze Q< 3x,y(xR;z and yR;z and not xRyy)
B) Mg, xpE A {My,x>F A

Proof. To show that A{y is a strictly condensed J model we first establish that R; Ry < Ry,
and RyR;' < Ry, using the transitivity of R;. Next, it is clear that R -» which equals Ry,
is symmetric. Finally, to show V., p(xRyy=3z(xR,z and yR,z and xRyz)) we usc the
reflexivity of R,. To show (2) we use the heredity of Q. And to establish (3) it is enough to
show, using Lemma 13, that{M,, x> F 14 < Vy(xRyy=>ykA4). q.e.d.

Theorem 3.2, Let My = (X, Ry, Ry, V) be a strictly condensed J model, and let Q < X
be defined by (2) of Theorem 3.1. Then My = <X, Ry, Q, V) is a Q model such that (1)
and (3) of Theorem 3.1 hold.

Proof. To show that M, is a Q model it is enough to establish the hereditariness of Q,
using the transitivity of R;.

To show (1) from left to right, suppose xRy y. Using the definition of J models, it follows
that there is a z such that xR,z and yR;z and xRy z. Next suppose uR;z and vR;z. Since Ry
is symmetric (remember My is strictly condensed), we have zRyx, which in conjunction
with uR;z and vR;z, and the condition of Lemma 11(i), implies uRyv. (More precisely,
since zRy x, there is a ¢ such that zR, ¢ and xRt and zRyt. Hence, uR; Ryt, and this implies
uRyt. Since vR;t, we have uRyRrv, and so, uRyv.) Hence, not HE‘u, v(uR,;z and
vR;z and not uRyv), i.e., z¢ Q.

The other direction of (1) follows trivially. And finally, to establish (3) it is enough to
show using (1) that t

{My,x>F 1A < Vy(Az(xR;z and yR;z and z ¢ Q)=>ykA).

Then we apply Lemma 13. g.e.d.



§ 6. N models and some extensions of J

We shall first state some equivalences between schemata and conditions on N frames
in the style of Lemmata 9, 10 and 11. Analogues of these schemata can be found in [11].

Lemma 14,
(i) FrEAv A< FrE(TTA—A)—A4
< R s R
< R, SR .

(i) FrE 14 v 71714 < R5' R4 S R (i.e., R is euclidean)
< Ry'Ry<s R+.

(itiy Fr F 11 (A—>A)—>B) < Vx, y(xRyr=3z(yRyz and Y1(zR t=Tu 1Ryw))).

The extension of J with 4 v 714 is known as Curry’s system D (see [5], Chapter 6).
This system is sound and complete with respect to (condensed, strictly condensed) J models
which satisfy Ry < Ry !, To establish that, it is enough to show that in the canonical D frame
R§ < (Rf)™ . Similarly, the extension of J with 714 v 71714 is sound and complete with
respect to (condensed, strictly condensed) J models in which R— is euclidean. Finally, we
can show that the extension of J with 7171(71(4—4)— B) is sound and complete with
respect to (condensed, strictly condensed) J models which satisfy the condition mentioned
in Lemma 14(iii).

For this last completeness proof it seems we must use a canonical model made of
consistent theories only. Such a canonical model could already have been used for the
completeness proof of J, but it does not seem to be suitable for the completeness proof of N.
The point is that if we want to use such a canonical model, we must have that every theory
contains at least one negated formula in order to show that the 1 constructed in the proof
of Lemma 8 is consistent. In the presence of 4— 71714, but also of a weaker schema, like
1 7i(A—A), this will be satisfied. Incidentally, we have the following lemma.

Lemma 15. Frk 11 (A—A4) < Vx@y yRyx=3z ¥Ry2).

The right-hand side of this equivalence amounts to a weak form of seriality of Ry
(cf. Lemma 16(i)). The extension of N with 71 71(4— A) is sound and complete with respect
to (condensed, strictly condensed) N models which satisty this weak seriality.

Let us return now to the extension of J with 71 71(1(4— A4)— B). This system corres-
ponds exactly to the system called JP’ in [11] (p. 46), and is the weakest extension of J in
which 71774 is provable iff 4 is a classical tautology. The system JP’ is sound and complete
with respect to the class of Q models which satisfy the condition

Vx, »((xRyy and y ¢ Q)=>3z(vR;z and Vt(zR1=>1¢ )
(cf. [12]).
We can also obtain completeness proofs with respect to specific classes of N models
for systems obtained by extending N, rather than J, with the schemata above.



§ 7. N models and H

The Heyting propositional calculus H is obtained by extending J with either
HWA—A)—B or A A T1A— B. For these two schemata we have the following lemma.

Lemma 16. (i) Fr¥k 71(A— A)—> B < ¥Vx3r YRy
< Vx3dv xRyy (i.e., R~. or Ry, is serial).

(ii) FrF AAT1A— B < R~ is rcflexive.

If R is reflexive, it is of course serial, whereas in the presence of
Vx, v(xRyy=3z(xR,z and yR;z and xRyz))

the seriality of R entails its reflexivity.

We shall call J frames (models) in which R+ is reflexive, H frames (models). 1t is possible
to show that H is sound and complete with respect to (condensed, strictly condensed)
H models. (For that we use again a canonical model with consistent theories.)

The relation Ry disappears in a certain sense from H models — somewhat analogously
to the way Q disappears from Q models adequate for H. That is, R— becomes definable in
terms of R,. as it is shown by the following lemma, which we state without proof.

Lemma 17. A N fraitic is « H frame iff R = R Ry 1.

This lemma is connected with the fact that in ordinary Kripke models for H, of the
form {X.R,. V). we have x F 714 <> Vy(xR, Ry 'y =1k A), which is easily shown with
the help of Intuitionistic Heredity in these models and the reflexivity of R, (cf. Lemma 13).
This also points towards a certain connection between intuitionistic negation and the
Brouwersche modal logic B (based on the classical propositional calculus), for which
Kripke frames (X, R, > where R,, is reflexive and symmetric are characteristic. Histori-
cally, B was connected with intuitionistic negation because 4— 71> 7<>A4 is provable
in B. but the converse is not (sec [10], p. 58. fn. 37).

Identifying R— with R, R[ ' explains, for example, how the euclideanity of R appears
as the condition equivalent with 74 v 71714 in Kripke frames (X, R,) this schema holds
iff R "R, < R,R;", and this condition is equivalent to (R,R; ) ™' R;R; ' S R, R; .

§ 8. N models and systems based on classical or intermediate negationless logics

Some well known extensions of J or H are obtained by adding axioms not involving
negation (see [11]). This mecans that in the corresponding N models no new condition
involving Ry, but only conditions involving R;, will be added. These conditions can have
repercussions on the Ry relation too. Of course, it is also possible that conditions invol-



27

ving Ry have repercussions on R;. In this section, with which we shall conclude our paper,
we shall make a few comments on these topics.

Curry’s system E is obtained by extending J with ((4— B)— 4)— A (see [5], Chapter 6).
It is easy to conclude that E is sound and complete with respect to (condensed, strictly
condensed) J models in which R; is an equivalence relation. We can also condense these
models with respect to R, by making R, an identity relation, as N models in general could
be condensed by making R, a partial-ordering relation. Consider J frames in which R, is
identity (in these frames R;Ry = RyR; ' = Ry is trivially satisfied). It is easy to infer
that in these frames Vx, 1(xRyy=.x = y). Now, the converse of this condition is the
reflexivity of Ry, and this is why with the reflexivity of Ry, which comes with 4 A 74— B,
R, would become the identity relation, and everything would collapse into classical logic.

In general, N models with R, an equivalence, or an identity relation, can serve to study
systems which like E are obtained by extending the negationless fragment of classical pro-
positional logic with some negation axioms. Similarly, systems related to Dummett’s
intermediate logic LC (see [11]) which are obtained by extending the negationless fragment
of H plus (4— B) v (B—'A) with some negation axioms, could be studied with N models
where R; is a linear-ordering relation.

‘Next we shall mention a condition involving Ry which transforms the R; relation of
a J frame into an equivalence relation. This condition is on the right-hand side of the
following lemma.

Lemma 18. /r F 1 14— A < Vx3y(xRyy and Yz(yRyz=:zR;x)).

It is well known that either 4 v 714, or (7A—A)— A, or 7114— A can be added
to H to obtain the classical propositional calculus. But only 71 714 A yields this calculus
when added to J — the other two schemata yield D. This also comes out in the condition
for 71 714— A4 of Lemma 18, which entails the seriality of Ry. This seriality. or the reflexivity
of R— is needed to enable the R, relation of a J frame to collapse into equivalence, or
identity.
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